		YSTE	Μ								
	Desses	ilium Diele i	Annan kunin fa		C. und a ma						
	Procees to	allure RISK /	Ananiysis to		System	access the fo		o waa idaat	fied		
	Internet secure transmissions and Quality Assurance Control Inspections not being performed property										oporty
		internet St		1113310113 0		Assurance	Control Ins	spections n	ot being pe	inormed pr	openy
		Action fo	r this Failur	e/Risk was	identified as	being "Pror	erly Model (Correct Qua	lity Test"		
	A COnecili	"Properly	Model Cor			nent Test"			ity rest.		
		TTOPCITY				nent rest .					
	ERD along	with part	nerina com	panies qu	ality assura	nce and pr	ocess cont	rol organiza	ation decide	d to create	a model
	to help ve	rifv and ider	ntify any sec	curity violati	ons and stat	pility of the k	iosk machin	e stand.			
	In order to	complete th	his action th	e company	decides to e	employ the	Veibull stat	istical mod	el in order t	0	
	in order to	identify the	most suitab	ole model.							
	0775										
	SIEP 1										
	Dete 1	la staul fui	an a Brain				ana ah isil	f an anticipation of			Kingle start 1
	Data is co	nected from	quality and	a process co	ontroi test, d	uring a rand	om check o	r systems, a	pproximatel	y (20) ERD	NIOSK MACHI
		:	+(i)		:	+(i)					
		1	(I) 0.8		16	1 66					
		2	0.82		10	1.00					
-		3	0.02		18	1.05		-			
		4	0.56		19	1.9					
		5	0.85		20	2.12					
		6	1.12								
		7	1.35								
		8	1.29								
		9	1.29								
		10	1.32								
		11	1.33								
		12	1.32								
		13	1.36								
-		14	1.39					-			
		15	1.41								
-	STEP 2							-			
-	0.12. 2							-			
-	Based upo	n the data o	collected the	e x and v va	riables for a	Standard	l og and Inv	erse model	are calculate	ed in the cha	art below
	Daooa apo					otandara ,	Log and in				
	1	1	Standard	L	Log				Inverse		
	i	z(i)	Xi	Vi	z(i)	Xi	Vi	z(i)	Xi	Vi	
	1	0.800	-0.223	-0.385	-0.223	-0.223	-2.086	1.250	0.223	0.433	
	2	0.820	-0.198	-0.370	-0.198	-0.198	-1.966	1.220	0.198	0.398	
	3	0.600	-0.511	-0.539	-0.511	-0.511	-3.487	1.667	0.511	0.911	
	4	0.560	-0.580	-0.570	-0.580	<u>-0.58</u> 0	-3.822	1.786	0.580	1.047	
	5	0.850	-0.163	-0.347	-0.163	-0.163	-1.791	1.176	0.163	0.349	
	6	1.120	0.113	-0.139	0.113	0.113	-0.448	0.893	-0.113	0.024	
	7	1.350	0.300	0.037	0.300	0.300	0.461	0.741	-0.300	-0.151	
	8	1.290	0.255	-0.009	0.255	0.255	0.240	0.775	-0.255	-0.111	
	9	1.290	0.255	-0.009	0.255	0.255	0.240	0.775	-0.255	-0.111	
	10	1.320	0.278	0.014	0.278	0.278	0.351	0.758	-0.278	-0.132	
	11	1.330	0.285	0.022	0.285	0.285	0.388	0.752	-0.285	-0.138	
	12	1.320	0.278	0.014	0.278	0.278	0.351	0.735	-0.278	-0.132	
ļ	14	1 300	0.307	0.040	0.307	0.307	0.497	0.735	-0.307	-0.137	
-	15	1.410	0.344	0.083	0.344	0.344	0.672	0.709	-0.344	-0.187	
	16	1.660	0.507	0.275	0.507	0.507	1.467	0.602	-0.507	-0.309	
	17	1.690	0.525	0.299	0.525	0.525	1.554	0.592	-0.525	-0.322	
	18	1.850	0.615	0.421	0.615	0.615	1.994	0.541	-0.615	-0.380	
	19	1.900	0.642	0.460	0.642	0.642	2.124	0.526	-0.642	-0.397	
	20	2.120	0.751	0.629	0.751	0.751	2.658	0.472	-0.751	-0.459	

	overege	1 202			0.205			0.070			
	average	1.302			0.205			0.072			
	STEP 3										
	The x and	v data is the	en graphed	for the Star	ndard, Inve	rse and Loo	data points				
	o / and		graphed		,						
		I						I			
					- · · ·						
					Standard						
				0.800							
				0.600							
				0.400							
				0.400							
				0.200							
	≻ ⊢			0.000				1			
	-1		-0.5	0.000)	0.5		1	1.5		
				-0.200 -							
				-0.400				•			
				0.400							
				-0.600							
				-0.800							
					х						
		-			-	-	-	-			
					Inverse						
						1 200 -					
		1.000									
	_					0.800					
						0.600					
						0.000					
						0.400			•		
	► _					0.200					
						0.200				-	
						0.000		-			
	-1.5		-1	-0.	.5	0.200	0	0.5	1		
						0.400					
					-	0.400					
						0.600					
					x						
	1	1									
i	l	l	l	l	l	l	l	I			
					Log						
				3 000 -							
				0.000							
				2.000							
				1 000							
				1.000							
			1	0.000		1		T			
	-1		-0.5	6)	0.5		1	1.5		
	>			-1.000							

	1.000									
	-2.000									
-3.000										
4 000										
-4.000										
-5.000										
STEP 4										
Studying the graphs plotted above we see the only straight line results were those obtained for the Log Weibull distribution.										
This is the best suited model to choose. We will calculate the parameters as showm below										
We use	We use the following formulas to relate parameters (α) and (β) to the <u>slope</u> and the <u>y intersection</u>									
	β = slope				y₀= -ln(α)	Χβ				
 We next use the LINEST function to determine the values of the slope and the <u>vintersection</u>										
We obta	in the followin	g results		We next ca	Iculate the v	alues for (α)) and (β).			
	Slope	#VALUE!			α	β				
	y 0	-1			#VALUE!	#VALUE!				
We obtain the following formula										
	F(t)= 1-e	xp[exp((t-	·a)/b)]		where	a=ln(α)				
						b=1/β				